Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Mol Genet Metab Rep ; 39: 101084, 2024 Jun.
Article En | MEDLINE | ID: mdl-38694233

Phenylketonuria (PKU) is a genetic disorder caused by deficiency of the enzyme phenylalanine hydroxylase (PAH), which results in phenylalanine (Phe) accumulation in the blood and brain, and requires lifelong treatment to keep blood Phe in a safe range. Pegvaliase is an enzyme-substitution therapy approved for individuals with PKU and uncontrolled blood Phe concentrations (>600 µmol/L) despite prior management. Aggregated results from the PRISM clinical trials demonstrated substantial and sustained reductions in blood Phe with a manageable safety profile, but also noted individual variation in time to and dose needed for a first response. This analysis reports longer-term aggregate findings and characterizes individual participant responses to pegvaliase using final data from the randomized trials PRISM-1 (NCT01819727) and PRISM-2 (NCT01889862), and the open-label extension study 165-304 (NCT03694353). In 261 adult participants with a mean of 36.6 months of pegvaliase treatment, 71.3%, 65.1%, and 59.4% achieved clinically significant blood Phe levels of ≤600, ≤360, and ≤ 120 µmol/L, respectively. Some participants achieved blood Phe reductions with <20 mg/day pegvaliase, although most required higher doses. Based on Kaplan-Meier analysis, median (minimum, maximum) time to first achievement of a blood Phe threshold of ≤600, ≤360, or ≤ 120 µmol/L was 4.4 (0.0, 54.0), 8.0 (0.0, 57.0), and 11.6 (0.0, 66.0) months, respectively. Once achieved, blood Phe levels remained below clinical threshold in most participants. Sustained Phe response (SPR), a new method described within for measuring durability of blood Phe response, was achieved by 85.5%, 84.7%, and 78.1% of blood Phe responders at blood Phe thresholds of ≤600, ≤360, or ≤ 120 µmol/L, respectively. Longer-term safety data were consistent with previous reports, with the most common adverse events (AEs) being arthralgia, injection site reactions, headache, and injection site erythema. The incidence of most AEs, including hypersensitivity AEs, was higher during the early treatment phase (≤6 months) than later during treatment. In conclusion, using data from three key pegvaliase clinical trials, participants treated with pegvaliase were able to reach clinically significant blood Phe reductions to clinical thresholds of ≤600, ≤360, or ≤ 120 µmol/L during early treatment, with safety profiles improving from early to sustained treatment. This study also supports the use of participant-level data and new ways of looking at durable blood Phe responses to better characterize patients' individual PKU treatment journeys.

2.
Mol Genet Metab Rep ; 37: 101015, 2023 Dec.
Article En | MEDLINE | ID: mdl-38053931

Background: Pegvaliase has allowed many adults with phenylketonuria (PKU) to achieve acceptable blood Phe control while eating an unrestricted diet. However, little is known about potential differences in nutritional status and eating behaviors after transitioning from a phenylalanine (Phe)-restricted to an unrestricted diet. Here we assessed change in nutritional status in adults with early-treated PKU who were consuming a Phe-restricted diet (intact protein ≤0.8 g/kg/day) prior to starting pegvaliase. Methods: A 15-month, prospective, longitudinal study to assess change in anthropometrics, dietary intake, laboratory indices of nutritional status, bone mineral density (BMD), body composition, measured resting energy expenditure (REE), and eating behaviors between baseline and Month 15. Results: Eleven adults (n = 7 female) aged 19.5-52.9 years completed the study. Six participants had a substantial blood Phe reduction (responders) and five participants had a modest blood Phe reduction (partial responders) by Month 15. Intact protein intake increased by an average of 49.4 g/day and 26.7 g/day in responders and partial responders, respectively. Plasma concentrations of most vitamins, minerals, and essential fatty acids assessed were normal, though micronutrient intakes decreased as participants decreased or discontinued PKU medical food(s). Responders had a more variable change in body mass index (BMI) and lean mass index (LMI) compared to partial responders, though there were no clear trends in BMD or body composition changes. Total protein intake was positively correlated with LMI. Responders, but not partial responders, self-reported increased in enjoyment of food and decreased food neophobia, uncontrolled eating, and emotional eating. Discussion: Participants transitioning to an unrestricted diet while on pegvaliase maintained adequate nutritional status overall with no clinically significant changes in cardiovascular or glycemic markers. Responders reported improvements in eating behaviors, including reduced food neophobia, uncontrolled eating, and emotional eating, and increased enjoyment of food. There were no consistent trends in BMD, body composition, or BMI changes. A larger sample size and longer follow-up period are needed to further assess potential changes.

3.
Mol Genet Metab ; 139(3): 107626, 2023 07.
Article En | MEDLINE | ID: mdl-37354892

Sengers syndrome (OMIM# 212350) is a rare autosomal recessive mitochondrial disease caused by biallelic pathogenic variants in the AGK gene, which encodes the acylglycerol kinase enzyme. The syndrome was originally defined as a "triad" of hypertrophic cardiomyopathy, cataracts, and lactic acidosis, with or without skeletal myopathy. The clinical manifestation of Sengers Syndrome exhibits substantial heterogeneity, with mild and severe/infantile forms reported. Further, biallelic AGK pathogenic variants have also been identified in a familial case of non-syndromic isolated cataract (OMIM# 614691), expanding our understanding of the gene's influence beyond the originally defined syndrome. In this study, we provide a systematic review of molecularly confirmed cases with biallelic AGK pathogenic variants (Supplementary Table 1). Our analysis demonstrates the variable expressivity and penetrance of the central features of Sengers syndrome, as follows: cataracts (98%), cardiomyopathy (88%), lactic acidosis (adjusted 88%), and skeletal myopathy (adjusted 74%) (Table 1). Furthermore, we investigate the associations between genotype, biochemical profiles, and clinical outcomes, with a particular focus on infantile mortality. Our findings reveal that patients carrying homozygous nonsense variants have a higher incidence of infant mortality and a lower median age of death (p = 0.005 and p = 0.02, Table 2a). However, the location of pathogenic variants within the AGK domains was not significantly associated with infantile death (p = 0.62, Table 2b). Additionally, we observe a borderline association between the absence of lactic acidosis and longer survival (p = 0.053, Table 2c). Overall, our systematic review sheds light on the diverse clinical manifestations of AGK-related disorders and highlights potential factors that influence its prognosis. These provide important implications for the diagnosis, treatment, and counseling of affected individuals and families.


Acidosis, Lactic , Cardiomyopathies , Cataract , Muscular Diseases , Infant , Humans , Acidosis, Lactic/genetics , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cataract/genetics , Muscular Diseases/genetics , Muscular Diseases/complications , Biological Variation, Population , Phosphotransferases (Alcohol Group Acceptor)
4.
Genet Med ; 25(7): 100839, 2023 Jul.
Article En | MEDLINE | ID: mdl-37057675

PURPOSE: LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date. METHODS: Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems. RESULTS: Affected individuals presented with developmental and/or behavioral abnormalities, autism spectrum disorder, variable intellectual disability, and microcephaly. We observed nucleolar accumulation for 2 missense variants located within the DNA-binding HOX domain, impaired interaction with co-factor LDB1 for another variant located in the protein-protein interaction-mediating LIM domain, and impaired transcriptional activation by luciferase assay for 4 missense variants. CONCLUSION: We implicate LHX2 haploinsufficiency by deletion and likely gene-disrupting variants as causative for a variable NDD. Our findings suggest a loss-of-function mechanism also for likely pathogenic LHX2 missense variants. Together, our observations underscore the importance of LHX2 in the nervous system and for variable neurodevelopmental phenotypes.


Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , LIM-Homeodomain Proteins/genetics , Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Neurodevelopmental Disorders/pathology , Transcription Factors/genetics , Intellectual Disability/genetics , Intellectual Disability/complications
5.
Mol Genet Metab ; 139(1): 107579, 2023 05.
Article En | MEDLINE | ID: mdl-37099821

Among researchers and clinicians, there is a call for the development and validation of new measures to better assess and characterize neurocognitive difficulties associated with early-treated phenylketonuria (ETPKU) and other metabolic disorders. The NIH Toolbox represents a relatively new computer-administered assessment tool and provides a sampling of performance across multiple cognitive domains, several of which (e.g., executive function, processing speed) are at risk for disruption in ETPKU. The goal of the present study was to provide an initial evaluation of the value and sensitivity of the NIH Toolbox for use with individuals with ETPKU. To this end, a sample of adults with ETPKU and a demographically-matched comparison group without PKU completed the cognitive and motor batteries of the Toolbox. Results indicate that overall performance (as reflected by the Fluid Cognition Composite) was sensitive to both group differences (ETPKU vs non-PKU) as well as blood Phe levels (a marker of metabolic control). The present findings offer preliminary support for the utility of the NIH Toolbox as a measure of neurocognitive functioning in individuals with ETPKU. Future research including a larger sample size and broader age range is needed to fully validate the Toolbox for clinical and research use with individuals with ETPKU.


Cognition , Phenylketonurias , Humans , Adult , Neuropsychological Tests , Executive Function , Processing Speed
6.
Mol Genet Metab ; 137(1-2): 114-126, 2022.
Article En | MEDLINE | ID: mdl-36027720

BACKGROUND: Early treated patients with phenylketonuria (PKU) often become lost to follow-up from adolescence onwards due to the historical focus of PKU care on the pediatric population and lack of programs facilitating the transition to adulthood. As a result, evidence on the management of adolescents and young adults with PKU is limited. METHODS: Two meetings were held with a multidisciplinary international panel of 25 experts in PKU and comorbidities frequently experienced by patients with PKU. Based on the outcomes of the first meeting, a set of statements were developed. During the second meeting, these statements were voted on for consensus generation (≥70% agreement), using a modified Delphi approach. RESULTS: A total of 37 consensus recommendations were developed across five areas that were deemed important in the management of adolescents and young adults with PKU: (1) general physical health, (2) mental health and neurocognitive functioning, (3) blood Phe target range, (4) PKU-specific challenges, and (5) transition to adult care. The consensus recommendations reflect the personal opinions and experiences from the participating experts supported with evidence when available. Overall, clinicians managing adolescents and young adults with PKU should be aware of the wide variety of PKU-associated comorbidities, initiating screening at an early age. In addition, management of adolescents/young adults should be a joint effort between the patient, clinical center, and parents/caregivers supporting adolescents with gradually gaining independent control of their disease during the transition to adulthood. CONCLUSIONS: A multidisciplinary international group of experts used a modified Delphi approach to develop a set of consensus recommendations with the aim of providing guidance and offering tools to clinics to aid with supporting adolescents and young adults with PKU.


Phenylketonurias , Child , Adolescent , Young Adult , Humans , Adult , Consensus , Phenylketonurias/diagnosis , Mass Screening
8.
Mol Genet Metab ; 137(1-2): 104-106, 2022.
Article En | MEDLINE | ID: mdl-35964530

Novel pharmaceutical therapies such as pegvaliase, phenylalanine ammonia lyase (PAL), have enhanced disease control for many individuals with phenylketonuria (PKU). We present a retrospective chart review to assess pegvaliase doses over time in individuals followed at the Boston Children's Hospital PAL Clinic, including those who started pegvaliase in a clinical trial ("trial patients") and those who started after drug came to market ("post-market patients"). Trial patients were on pegvaliase an average of 4.8 years longer, and their mean current pegvaliase dose was 126 ± 92 compared to 223 ± 147 mg/week for post-market patients (p = 0.0155), suggesting that the pegvaliase dose for target efficacy may decrease over time in adults with PKU. In post-market patients, we demonstrated a significant, inverse correlation with dose change and number of weeks from response (r = -0.46, p = 0.046). The entire cohort showed significant variability in terms of time to achieve a therapeutic response, response dose, and current dose. Our data suggest that patients tolerate a reduction in pegvaliase dose over time while maintaining efficacy. This is a clinically meaningful finding as it indicates that patients may reduce number of weekly injections over time on pegvaliase.


Phenylalanine Ammonia-Lyase , Phenylketonurias , Adult , Humans , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Retrospective Studies , Clinical Trials as Topic
9.
Brain ; 145(8): 2687-2703, 2022 08 27.
Article En | MEDLINE | ID: mdl-35675510

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Brain Diseases , Epilepsy , Intellectual Disability , Spasms, Infantile , Vacuolar Proton-Translocating ATPases , Adenosine Triphosphate , Atrophy , Child , Homeostasis , Humans , Infant , Lysosomes , Phenotype
10.
Am J Med Genet A ; 188(9): 2750-2759, 2022 09.
Article En | MEDLINE | ID: mdl-35543142

The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.


Autism Spectrum Disorder , Neurodevelopmental Disorders , Retinitis Pigmentosa , Autism Spectrum Disorder/genetics , Heterozygote , Humans , Neurodevelopmental Disorders/genetics , RNA-Binding Proteins/genetics , Retinitis Pigmentosa/genetics
11.
Mol Genet Metab Rep ; 28: 100790, 2021 Sep.
Article En | MEDLINE | ID: mdl-34430209

OBJECTIVE: To present a case series that illustrates real-world use of pegvaliase based on the initial experiences of US healthcare providers. METHODS: Sixteen healthcare providers from 14 centers across the US with substantial clinical experience in treating patients with phenylketonuria (PKU) with pegvaliase in the two-plus years since FDA approval (May 2018) provided cases that exemplified important lessons from their initial experiences treating patients with pegvaliase. Key lessons from each case and takeaway points were discussed in both live and virtual meetings. RESULTS: Fifteen cases of adults with PKU (eight males, seven females), representing a spectrum of age (18 to 53 years), previous PKU care, comorbidities, and socioeconomic situations were reviewed and discussed. Full extended case reports are included in the Supplement. The cases showed that treating patients with a daily injectable can be challenging due to a patient's financial problems, treatment challenges, and neuropsychological and psychiatric comorbidities, which can be identified before starting pegvaliase, but do not prohibit successful treatment. The authors agreed that patient education on adverse events (AEs), time to efficacy, dietary changes, and food preparation is an ongoing process that should start prior to initiating pegvaliase treatment. Treatment goals and planned dietary changes once efficacy is reached should be defined prior to treatment initiation and re-evaluated throughout the course of therapy. Each patient's titration schedule and dietary adjustments are unique, depending on occurrence of AEs and individual goals of treatment. Despite the AE profile of pegvaliase, all but two patients remained motivated to continue treatment and achieved efficacy (except one patient in whom titration was still ongoing). AEs occurring early in the treatment pathway may require prolongation of the titration phase and/or concomitant medication use, but do not seem indicative of future tolerability or eventual efficacy. Close follow-up of patients during titration and maintenance to help with dietary changes is important. CONCLUSION: This case series provides real-world experience on the use of pegvaliase. Until data from registries and independent research become available, the data presented herein can support appropriate management of patients receiving pegvaliase in clinical practice.

12.
Nat Metab ; 3(8): 1125-1132, 2021 08.
Article En | MEDLINE | ID: mdl-34294923

Phenylketonuria (PKU) is a rare disease caused by biallelic mutations in the PAH gene that result in an inability to convert phenylalanine (Phe) to tyrosine, elevated blood Phe levels and severe neurological complications if untreated. Most patients are unable to adhere to the protein-restricted diet, and thus do not achieve target blood Phe levels. We engineered a strain of E. coli Nissle 1917, designated SYNB1618, through insertion of the genes encoding phenylalanine ammonia lyase and L-amino acid deaminase into the genome, which allow for bacterial consumption of Phe within the gastrointestinal tract. SYNB1618 was studied in a phase 1/2a randomized, placebo-controlled, double-blind, multi-centre, in-patient study ( NCT03516487 ) in adult healthy volunteers (n = 56) and patients with PKU and blood Phe level ≥600 mmol l-1 (n = 14). Participants were randomized to receive a single dose of SYNB1618 or placebo (part 1) or up to three times per day for up to 7 days (part 2). The primary outcome of this study was safety and tolerability, and the secondary outcome was microbial kinetics. A D5-Phe tracer (15 mg kg-1) was used to study exploratory pharmacodynamic effects. SYNB1618 was safe and well tolerated with a maximum tolerated dose of 2 × 1011 colony-forming units. Adverse events were mostly gastrointestinal and of mild to moderate severity. All participants cleared the bacteria within 4 days of the last dose. Dose-responsive increases in strain-specific Phe metabolites in plasma (trans-cinnamic acid) and urine (hippuric acid) were observed, providing a proof of mechanism for the potential to use engineered bacteria in the treatment of rare metabolic disorders.


Biological Therapy/methods , Escherichia coli , Phenylketonurias/therapy , Amidohydrolases/genetics , Amidohydrolases/metabolism , Biological Therapy/adverse effects , Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Engineering , Humans , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylketonurias/blood , Phenylketonurias/genetics , Treatment Outcome
13.
Mol Genet Metab ; 133(4): 345-351, 2021 08.
Article En | MEDLINE | ID: mdl-34116943

BACKGROUND: Pegvaliase is an enzyme substitution therapy that reduces blood phenylalanine (Phe) in adults with phenylketonuria (PKU), and often allows normalization of protein intake (≥0.8 g protein/kg). Here we examine the nutrition status of adults with PKU consuming a normal protein intake without medical food after being treated with pegvaliase for ≥1 year. METHODS: A cross-sectional study evaluating nutritional intake (3-day food record and food frequency questionnaire), anthropometrics, laboratory indices of protein, micronutrient, and essential fatty acid (EFA) status, and questionnaires evaluating food neophobia and Epicurean eating pleasure. RESULTS: Participants (n = 18, 61% female) started pegvaliase 4.9 ± 2.1 years prior to enrollment and were aged 38.2 ± 8.8 years with a mean BMI of 29.2 ± 4.1 kg/m2. Participants consumed a mean of 73.2 ± 17.6 g protein/d (1.0 ± 0.3 g/kg/d). Eleven participants had low blood Phe (<30 µmol/L) with adequate protein intake and normal indices of protein status. Micronutrient and EFA concentrations were normal except for mildly low vitamin D (<30 ng/mL, n = 12). Intakes of sodium, saturated fat, and added sugars exceeded recommendations for healthy adults, though mean diet quality was comparable to a US adult reference population. Lower food neophobia scores correlated with an increased aesthetic appreciation of food. However, 53% of participants self-reported having moderate (n = 6) to high (n = 3) food neophobia. DISCUSSION: Participants treated with pegvaliase consumed an unrestricted diet with adequate dietary protein and, overall, had normal protein, micronutrient, and fatty acid status. Despite low blood Phe, protein nutriture was not compromised. While nutritional deficiencies were not identified, diet quality was suboptimal and some participants reported food neophobia. Nutrition education remains an important component of care as patients adapt to a normal diet.


Diet , Nutritional Status/drug effects , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Adult , Cross-Sectional Studies , Dietary Proteins/administration & dosage , Fatty Acids, Essential , Female , Humans , Male , Micronutrients/blood , Middle Aged , Phenylalanine/blood , Phenylketonurias/physiopathology , Recombinant Proteins/therapeutic use , Surveys and Questionnaires
14.
Mol Genet Metab Rep ; 26: 100703, 2021 Mar.
Article En | MEDLINE | ID: mdl-33489760

Hereditary orotic aciduria (HOA) is a very rare inborn error of pyrimidine metabolism. It results from a defect of the uridine-5-monophosphate synthase (UMPS) gene. To date, only about twenty patients have been described. We report a case of HOA with a novel variant in the UMPS gene. A 17-year-old Emirati girl was born to first-cousin parents. During the first year, she had recurrent, severe infections including disseminated varicella. After evaluation for immunodeficiency, an impression of immunodeficiency of unknown etiology was presumed. Frequent episodes of pancytopenia were also noted. Bone marrow biopsy showed trilineage megaloblastoid maturation with dysplastic changes that were refractory to hematinic therapy. Also, she was noted to have failure to thrive, developmental delay and epilepsy. She was referred to the Genetics clinic where whole-exome sequencing (WES) was done and showed a novel homozygous variant in the UMPS gene confirming a diagnosis of HOA. She was started on uridine triacetate after which she showed clinical, hematologic and biochemical improvement. Although extremely rare, hereditary orotic aciduria should be suspected in any child with megaloblastic bone marrow, immunodeficiency or when developmental delay and anemia coexist.

15.
Mol Genet Metab Rep ; 24: 100603, 2020 Sep.
Article En | MEDLINE | ID: mdl-32489881

We present Boston Children's Hospital's clinic model for pegvaliase therapy in adults with phenylketonuria (PKU) and clinical outcomes in 46 patients over the first 1.5 years of commercial therapy. Approximately 70% (18/26) of patients starting pegvaliase achieved blood phenylalanine (Phe) <360 µmol/L, with an average of a 68 ± 24% decrease in blood Phe from baseline. All patients experienced at least minor side effects, but in most, management of the side effects allowed for treatment to continue.

16.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Article En | MEDLINE | ID: mdl-31130282

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Gain of Function Mutation , Guanosine Triphosphate/metabolism , Membrane Proteins/genetics , Monomeric GTP-Binding Proteins/genetics , Noonan Syndrome/etiology , Adult , Child , Female , Genetic Association Studies , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Noonan Syndrome/pathology , Pedigree , Protein Conformation
17.
Genet Med ; 21(8): 1851-1867, 2019 08.
Article En | MEDLINE | ID: mdl-30546086

PURPOSE: Phenylketonuria (PKU) is a rare metabolic disorder that requires life-long management to reduce phenylalanine (Phe) concentrations within the recommended range. The availability of pegvaliase (PALYNZIQ™, an enzyme that can metabolize Phe) as a new therapy necessitates the provision of guidance for its use. METHODS: A Steering Committee comprising 17 health-care professionals with experience in using pegvaliase through the clinical development program drafted guidance statements during a series of face-to-face meetings. A modified Delphi methodology was used to demonstrate consensus among a wider group of health-care professionals with experience in using pegvaliase. RESULTS: Guidance statements were developed for four categories: (1) treatment goals and considerations prior to initiating therapy, (2) dosing considerations, (3) considerations for dietary management, and (4) best approaches to optimize medical management. A total of 34 guidance statements were included in the modified Delphi voting and consensus was reached on all after two rounds of voting. CONCLUSION: Here we describe evidence- and consensus-based recommendations for the use of pegvaliase in adults with PKU. The manuscript was evaluated against the Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument and is intended for use by health-care professionals who will prescribe pegvaliase and those who will treat patients receiving pegvaliase.


Phenylalanine Ammonia-Lyase/therapeutic use , Phenylalanine/metabolism , Phenylketonurias/drug therapy , Recombinant Proteins/therapeutic use , Adolescent , Adult , Child , Dose-Response Relationship, Drug , Humans , Middle Aged , Phenylalanine/genetics , Phenylalanine Ammonia-Lyase/blood , Phenylalanine Ammonia-Lyase/genetics , Phenylketonurias/blood , Phenylketonurias/genetics , Phenylketonurias/pathology , Recombinant Proteins/blood , Recombinant Proteins/genetics , Young Adult
18.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Article En | MEDLINE | ID: mdl-30194818

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


GTP-Binding Protein beta Subunits/genetics , Genetic Association Studies , Mutation/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Epilepsy/genetics , Female , GTP-Binding Protein beta Subunits/chemistry , Humans , Male , Nervous System/growth & development , Phenotype , Pregnancy , Protein Structure, Tertiary
19.
Genes Chromosomes Cancer ; 57(5): 223-230, 2018 05.
Article En | MEDLINE | ID: mdl-29315962

Germ-line interstitial deletions involving the 14q32 chromosomal region, resulting in 14q32 deletion syndrome, are rare. DICER1 is a recently described cancer-predisposition gene located at 14q32.13. We report the case of a male child with a ∼5.8 Mbp 14q32.13q32.2 germ-line deletion, which included the full DICER1 locus. We reviewed available clinical and pathological material, and conducted genetic analyses. In addition to having congenital dysmorphic features, the child developed multiple DICER1 syndrome-related tumors before age 5 y: a pediatric cystic nephroma (pCN), a ciliary body medulloepithelioma (CBME), and a small lung cyst (consistent with occult pleuropulmonary blastoma Type I/Ir cysts seen in DICER1 mutation carriers). He also developed a cerebral spindle-cell sarcoma with myogenous differentiation. Our investigations revealed that the deletion encompassed 31 protein-coding genes. In addition to the germ-line DICER1 deletion, somatic DICER1 RNase IIIb mutations were found in the CBME (c.5437G > A, p.E1813K), pCN (c.5425G > A, p.G1809R), and sarcoma (c.5125G > A, p.D1709N). The sarcoma also harbored a somatic TP53 mutation: c.844C > T, p.R282W. Additional copy number alterations were identified in the CBME and sarcoma using an OncoScan array. Among the 8 cases with molecularly-defined 14q32 deletions involving DICER1 and for whom phenotypic information is available, our patient and one other developed DICER1-related tumors. Biallelic DICER1 mutations have not previously been reported to cause cerebral sarcoma, which now may be considered a rare manifestation of the DICER1 syndrome. Our study shows that DICER1-related tumors can occur in children with 14q32 deletions and suggests surveillance for such tumors may be warranted.


Chromosome Deletion , DEAD-box RNA Helicases/genetics , Neoplastic Syndromes, Hereditary/genetics , Ribonuclease III/genetics , Child , Chromosomes, Human, Pair 14 , Germ-Line Mutation , Humans , Male , Sequence Deletion
20.
Eur J Med Genet ; 61(3): 152-156, 2018 Mar.
Article En | MEDLINE | ID: mdl-29175559

Desmosterolosis is a rare multiple congenital anomaly syndrome caused by a defect in the enzyme 3-beta-hydroxysterol delta-24-reductase (DHCR24) in the cholesterol biosynthesis pathway. Defects in this enzyme cause increased level of the cholesterol precursor desmosterol while disrupting development of cholesterol, impacting embryogenesis. A total of 9 cases of desmosterolosis have been reported to date. We report a 20-month-old male from consanguineous parents with multiple congenital anomalies including corpus callosum hypoplasia, facial dysmorphism, cleft palate, pectus deformity, short and wide neck and distal contractures. On analysis of the regions of homozygosity found by microarray, we identified DHCR24 as a candidate gene. Sterol quantitation showed a desmosterol level of 162 µg/mL (nl: 0.82 ± 0.48). Genetic testing confirmed the diagnosis with a homozygous likely pathogenic mutation (p.Glu191Lys) in the DHCR24 gene. Our case expands the known diagnostic spectrum for Desmosterolosis. We suggest considering Desmosterolosis in the differential diagnosis of patients who present with concurrent agenesis of the corpus callosum with white matter atrophy and ventriculomegaly, retromicrognathia with or without cleft palate, hand contractures, and delay of growth and development. Children of consanguineous mattings may be at higher risk for rare recessive disorders and testing for cholesterol synthesis defect should be a consideration for affected children. Initial evaluation can be performed using sterol quantitation, followed by genetic testing.


Abnormalities, Multiple/diagnosis , Developmental Disabilities/diagnosis , Lipid Metabolism, Inborn Errors/diagnosis , Mutation , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Abnormalities, Multiple/genetics , Adult , Developmental Disabilities/genetics , Female , Homozygote , Humans , Infant , Lipid Metabolism, Inborn Errors/genetics , Male , Pedigree , Prognosis
...